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1 ONERA, The French Aerospace Lab, F-91761 Palaiseau, France -
{nicolas.audebert,bertrand.le saux}@onera.fr

2 Univ. Bretagne-Sud, UMR 6074, IRISA, F-56000 Vannes, France -
sebastien.lefevre@irisa.fr

Abstract. This work investigates the use of deep fully convolutional
neural networks (DFCNN) for pixel-wise scene labeling of Earth Obser-
vation images. Especially, we train a variant of the SegNet architecture
on remote sensing data over an urban area and study different strategies
for performing accurate semantic segmentation. Our contributions are
the following: 1) we transfer efficiently a DFCNN from generic everyday
images to remote sensing images; 2) we introduce a multi-kernel convo-
lutional layer for fast aggregation of predictions at multiple scales; 3) we
perform data fusion from heterogeneous sensors (optical and laser) using
residual correction. Our framework improves state-of-the-art accuracy
on the ISPRS Vaihingen 2D Semantic Labeling dataset.

1 Introduction

Over the past few years, deep learning has become ubiquitous for computer vi-
sion tasks. Convolutional Neural Networks (CNN) took over the field and are
now the state-of-the-art for object classification and detection. Recently, deep
networks extended their abilities to semantic segmentation, thanks to recent
works designing deep networks for dense (pixel-wise) prediction, generally built
around the fully convolutional principle stated by Long et al. [1]. These archi-
tectures have gained a lot of interest during the last years thanks to their ability
to address semantic segmentation. Indeed, fully convolutional architectures are
now considered as the state-of-the-art on most renowned benchmarks such as
PASCAL VOC2012 [2] and Microsoft COCO [3]. However, those datasets focus
on everyday scenes and assume a human-level point of view. In this work, we
aim to process remote sensing (RS) data and more precisely Earth Observation
(EO) data. EO requires to extract thematic information (e.g. land cover us-
age, biomass repartition, etc.) using data acquired from various airborne and/or
satellite sensors (e.g. optical cameras, LiDAR). It often relies on a mapping step,
that aims to automatically produce a semantic map containing various regions of
interest, based on some raw data. A popular application is land cover mapping
where each pixel is assigned to a thematic class, according to the type of land
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cover (vegetation, road, . . . ) or object (car, building, . . . ) observed at the pixel
coordinates. As volume of EO data continuously grows (reaching the Zettabyte
scale), deep networks can be trained to understand those images. However, there
are several strong differences between everyday pictures and EO imagery. First,
EO assumes a bird’s view acquisition, thus the perspective is significantly altered
w.r.t. usual computer vision datasets. Objects lie within a flat 2D plane, which
makes the angle of view consistent but reduces the number of depth-related
hints, such as projected shadows. Second, every pixel in RS images has a seman-
tic meaning. This differs from most images in the PASCAL VOC2012 dataset,
that are mainly comprised of a meaningless background with a few foreground
objects of interest. Such a distinction is not as clear in EO data, where im-
ages may contain both semantically meaningful “stuff” (large homogeneous non
quantifiable surfaces such as water bodies, roads, corn fields, . . . ) and “objects”
(cars, houses, . . . ) that have different properties.

First experiments using deep learning introduced CNN for classification of
EO data with a patch based approach [4]. Images were segmented using a seg-
mentation algorithm (e.g. with superpixels) and each region was classified using
a CNN. However, the unsupervised segmentation proved to be a difficult bot-
tleneck to overcome as higher accuracy requires strong oversegmentation. This
was improved thanks to CNN using dense feature maps [5]. Fully supervised
learning of both segmentation and classification is a promising alternative that
could drastically improve the performance of the deep models. Fully convolu-
tional networks [1] and derived models can help solve this problem. Adapting
these architectures to multimodal EO data is the main objective of this work.

In this work, we show how to perform competitive semantic segmentation of
EO data. We consider a standard dataset delivered by the ISPRS [6] and rely
on deep fully convolutional networks, designed for dense pixel-wise prediction.
Moreover, we build on this baseline approach and present a simple trick to
smooth the predictions using a multi-kernel convolutional layer that operates
several parallel convolutions with different kernel sizes to aggregate predictions
at multiple scale. This module does not need to be retrained from scratch and
smoothes the predictions by averaging over an ensemble of models considering
multiple scales, and therefore multiple spatial contexts. Finally, we present a
data fusion method able to integrate auxiliary data into the model and to merge
predictions using all available data. Using a dual-stream architecture, we first
naively average the predictions from complementary data. Then, we introduce a
residual correction network that is able to learn how to fuse the prediction maps
by adding a corrective term to the average prediction.

2 Related Work

2.1 Semantic Segmentation

In computer vision, semantic segmentation consists in assigning a semantic label
(i.e. a class) to each coherent region of an image. This can be achieved using
pixel-wise dense prediction models that are able to classify each pixel of the
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image. Recently, deep learning models for semantic segmentation have started
to appear. Many recent works in computer vision are actually tackling semantic
segmentation with a significant success. Nearly all state-of-the-art architectures
follow principles stated in [1], where semantic segmentation using Fully Con-
volutional Networks (FCN) has been shown to achieve impressive results on
PASCAL VOC2012. The main idea consists in modifying traditional classifica-
tion CNN so that the output is not a probability vector but rather a probability
map. Generally, a standard CNN is used as an encoder that will extract fea-
tures, followed by a decoder that will upsample feature maps to the original
spatial resolution of the input image. A heat map is then obtained for each
class. Following the path opened by FCN, several architectures have proven to
be very effective on both PASCAL VOC2012 and Microsoft COCO. Progresses
have been obtained by increasing the field-of-view of the encoder and removing
pooling layers to avoid bottlenecks (DeepLab [7] and dilated convolutions [8]).
Structured prediction has been investigated with integrated structured models
such as Conditional Random Fields (CRF) within the deep network (CRFas-
RNN [9,10]). Better architectures also provided new insights (e.g. ResNet [11]
based architectures [12], recurrent neural networks [13]). Leveraging analogies
with convolutional autoencoders (and similarly to Stacked What-Where Au-
toencoders [14]), DeconvNet [15] and SegNet [16] have investigated symmetrical
encoder-decoder architectures.

2.2 Scene Understanding in Earth Observation Imagery

Deep learning on EO images is a very active research field. Since the first works
on road detection [17], CNN have been successfully used for classification and
dense labeling of EO data. CNN-based deep features have been shown to out-
perform significantly traditional methods based on hand-crafted features and
Support Vector Machines for land cover classification [18]. Besides, a framework
using superpixels and deep features for semantic segmentation outperformed
traditional methods [4] and obtained a very high accuracy in the Data Fusion
Contest 2015 [19]. A generic deep learning framework for processing remote
sensing data using CNN established that deep networks improve significantly
the commonly used SVM baseline [20]. [21] also performed classification of EO
data using ensemble of multiscale CNN, which has been improved with the in-
troduction of FCN [22]. Indeed, fully convolutional architectures are promising
as they can learn how to classify the pixels (“what”) but also predict spatial
structures (“where”). Therefore, on EO images, such models would be not only
able to detect different types of land cover in a patch, but also to predict the
shapes of the buildings, the curves of the roads, . . .

3 Proposed Method

3.1 Data Preprocessing

High resolution EO images are often too large to be processed in only one pass
through a CNN. For example, the average dimensions of an ISPRS tile from
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Vaihingen dataset is 2493 × 2063 pixels, whereas most CNN are tailored for
a resolution of 256 × 256 pixels. Given current GPU memory limitations, we
split our EO images in smaller patches with a simple sliding window. It is then
possible to process arbitrary large images in a linear time. In the case where
consecutive patches overlap at testing time (if the stride is smaller than the
patch size), we average the multiple predictions to obtain the final classification
for overlapping pixels. This smoothes the predictions along the borders of each
patch and removes the discontinuities that can appear.

We recall that our aim is to transpose well-known architectures from tra-
ditional computer vision to EO. We are thus using neural networks initially
designed for RGB data. Therefore, the processed images will have to respect
such a 3-channel format. The ISPRS dataset contains IRRG images of Vaihin-
gen. The 3 channels (i.e. near-infrared, red and green) will thus be processed
as an RGB image. Indeed, all three color channels have been acquired by the
same sensor and are the consequence of the same physical phenomenon. These
channels have homogeneous dynamics and meaning for our remote sensing ap-
plication. The dataset also includes additional data acquired from an aerial laser
sensor and consisting of a Digital Surface Model (DSM). In addition, we also
use the Normalized Digital Surface Model (NDSM) from [23]. Finally, we com-
pute the Normalized Difference Vegetation Index (NDVI) from the near-infrared
and red channels. NDVI is a good indicator for vegetation and is computed as
follows:

NDV I =
IR−R

IR + R
. (1)

Let us recall that we are working in a 3-channel framework. Thus we build for
each IRRG image another companion composite image using the DSM, NDSM
and NDVI information. Of course, such information does not correspond to color
channels and cannot be stacked as an RGB color image without caution. Nev-
ertheless, this composite image contains relevant information that can help dis-
criminating between several classes. In particular, the DSM includes the height
information which is of first importance to distinguish a roof from a road section,
or a bush from a tree. Therefore, we will explore how to process these heteroge-
neous channels and to combine them to improve the model prediction by fusing
the predictions of two networks sharing the same topology.

3.2 Network architecture

SegNet There are many available architectures for semantic segmentation. We
choose here the SegNet architecture [16] (cf. Fig. 1), since it provides a good
balance between accuracy and computational cost. SegNet’s symmetrical archi-
tecture and its use of the pooling/unpooling combination is very effective for
precise relocalisation of features, which is intuitively crucial for EO data. In
addition to SegNet, we have performed preliminary experiments with FCN [1]
and DeepLab [?]. Results reported no significant improvement (or even no im-
provement at all). Thus the need to switch to more computationally expensive
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Fig. 1: Illustration of the SegNet architecture applied to EO data.

architectures was not demonstrated. Note that our contributions could easily be
adapted to other architectures and are not specific to SegNet.

SegNet has an encoder-decoder architecture based on the convolutional layers
of VGG-16 from the Visual Geometry Group [24,25]. The encoder is a succession
of convolutional layers followed by batch normalization [26] and rectified linear
units. Blocks of convolution are followed by a pooling layer of stride 2. The
decoder has the same number of convolutions and the same number of blocks. In
place of pooling, the decoder performs upsampling using unpooling layers. This
layer operates by relocating at the maximum index computed by the associated
pooling layer. For example, the first pooling layer computes the mask of the
maximum activations (the “argmax”) and passes it to the last unpooling layer,
that will upsample the feature map to a full resolution by placing the activations
on the mask indices and zeroes everywhere else. The sparse feature maps are
then densified by the consecutive convolutional layers. The encoding weights
are initialized using the corresponding layers from VGG-16 and the decoding
weights are initialized randomly using the strategy from [27]. We report no gain
with alternative transfer functions such as ELU [28] or PReLU [27] and do
not alter further the SegNet architecture. Let N be the number of pixels in a
patch and k the number of classes, for a specified pixel i, let yi denote its label
and (zi1, . . . , z

i
k) the prediction vector; we minimize the normalized sum of the

multinomial logistic loss of the softmax outputs over the whole patch:

loss =
1

N

N∑
i=1

k∑
j=1

yij log

 exp(zij)

k∑
l=1

exp(zil )

 . (2)

As previously demonstrated in [29], visual filters learnt on generic datasets
such as ImageNet can be effectively transferred on EO data. However, we suggest
that remote sensing images have a common underlying spatial structure linked
to the orthogonal line of view from the sky. Therefore, it is interesting to allow
the filters to be optimized according to these specificities in order to leverage the
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Fig. 2: Our multi-kernel convolutional layer operates at 3 multiple scales, which
is equivalent to averaging an ensemble of 3 models sharing weights.

common properties of all EO images, rather than waste parameters on useless
filters. To assess this hypothesis, we experiment different learning rates for the
encoder (lre) and the decoder (lrd). Four strategies have been experimented:

– same learning rate for both: lrd = lre, lre/lrd = 1,
– slightly higher learning rate for the decoder: lrd = 2× lre, lre/lrd = 0.5,
– strongly higher learning rate for the decoder: lrd = 10× lre, lre/lrd = 0.1,
– no backpropagation at all for the encoder: lre = 0, lre/lrd = 0.

As a baseline, we also try to randomly initialize the weights of both the encoder
and the decoder to train a new SegNet from scratch using the same learning
rates for both parts.

Multi-kernel Convolutional Layer Finally, we explore how to take spatial
context into account. Let us recall that spatial information is crucial when deal-
ing with EO data. Multi-scale processing has been proven effective for classifi-
cation, notably in the Inception network [30], for semantic segmentation [8] and
on remote sensing imagery [21]. We design here an alternative decoder whose
last layer extracts information simultaneously at several spatial resolutions and
aggregates the predictions. Instead of using only one kernel size of 3 × 3, our
multi-kernel convolutional layer performs 3 parallel convolutions using kernels
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of size 3× 3, 5× 5 and 7× 7 with appropriate padding to keep the image dimen-
sions. These different kernel sizes make possible to aggregate predictions using
different receptive cell sizes. This can be seen as performing ensemble learning
where the models have the same topologies and weights, excepted for the last
layer, as illustrated by Fig. 2. Ensemble learning with CNN has been proven
to be effective in various situations, including super-resolution [31] where mul-
tiple CNN are used before the final deconvolution. By doing so, we are able to
aggregate predictions at different scales, thus smoothing the predictions by com-
bining different fields of view and taking into account different sizes of spatial
context. If Xp denotes the input activations of the multi-kernel convolutional
layer for the pth feature map, Zs

p the activations after the convolution at the sth

scale (s ∈ {1, . . . , S} with S = 3 here), Z ′
q the final outputs and W s

p,q the qth

convolutional kernel for the input map p at scale s, we have:

Z ′
q =

1

S

S∑
s=1

Zs
p =

1

S

S∑
s=1

∑
p

W s
p,qXp . (3)

Let S denote the number of parallel convolutions (here, S = 3). For a given
pixel at index i, if zs,ik is the activation for class k and scale s, the logistic loss
after the softmax in our multi-kernel variant is:

loss =

N∑
i=1

k∑
j=1

yij log


exp( 1

S

S∑
s=1

zs,ij )

k∑
l=1

exp( 1
S

S∑
s=1

zs,il )

 . (4)

We can train the network using the whole multi-kernel convolutional layer
at once using the standard backpropagation scheme. Alternatively, we can also
train only one convolution at a time, meaning that our network can be trained at
first with only one scale. Then, to extend our multi-kernel layer, we can simply
drop the last layer and fine-tune a new convolutional layer with another kernel
size and then add the weights to a new parallel branch. This leads to a higher
flexibility compared to training all scales at once, and can be used to quickly
include multi-scale predictions in other fully convolutional architectures only by
fine-tuning.

This multi-kernel convolutional layer shares several concepts with the com-
petitive multi-scale convolution [32] and the Inception module [30]. However, in
our work, the parallel convolutions are used only in the last layer to perform
model averaging over several scales, reducing the number of parameters to be
optimized compared to performing multi-scale in every layer. Moreover, this en-
sures more flexibility, since the number of parallel convolutions can be simply
extended by fine-tuning with a new kernel size. Compared to the multi-scale
context aggregation from Yu and Koltun [8], our multi-kernel does not reduce
dimensions and operates convolutions in parallel. Fast ensemble learning is then
performed with a very low computational overhead. As opposed to Zhao et al.
[21], we do not need to extract the patches using a pyramid, nor do we need
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Fig. 3: Fusion strategies of our dual-stream SegNet architecture.

to choose the scales beforehand, as we can extend the network according to the
dataset.

3.3 Heterogeneous Data Fusion with Residual Correction

Traditional 3-channel color images are only one possible type of remote sensing
data. Multispectral sensors typically provide 4 to 12 bands, while hyperspectral
images are made of a few hundreds of spectral bands. Besides, other data types
such as DSM or radar imagery may be available. As stated in Section 3.1, IRRG
data from the ISPRS dataset is completed by DSM, NDSM and NDVI. So we
will assess if it is possible to: 1) build a second SegNet that can perform semantic
segmentation using a second set of raw features, 2) combine the two networks
to perform data fusion and improve the accuracy.

The naive data fusion would be to concatenate all 6 channels (IR/R/G and
DSM/NDSM/NDVI) and feed a SegNet-like architecture with it. However, we
were not able to improve the performance in regard to a simple IRRG architec-
ture. Inspired by the multimodal fusion introduced in [33] for joint audio-video
representation learning and the RGB-D data fusion in [34], we try a prediction-
oriented fusion by merging the output activations maps. We consider here two
strategies: 1) simple averaging after the softmax (Fig. 3a), 2) neural network
merge (Fig. 3b). The latter uses a corrector network that can learn from both
sets of activations to correct small deficiencies in the prediction and hopefully
globally improve the prediction accuracy.
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Fig. 4: Fusion network for correcting the predictions using information from two
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Our original fusion network consisted in three convolutional layers which
input was intermediate feature maps from the original network. More precisely,
in the idea of fine-tuning by dropping the last fully connected layer before the
softmax, we remove the last convolutional layer of each network and replace them
by the fusion network convolutional layer, taking the concatenated intermediate
feature maps in input. This allows the fusion network to have more information
about raw activations, rather than just stacking the layers after the preprocessed
predictions. Indeed, because of the one-hot encoding of the ground truth labels,
the last layer activations tend to be sparse, therefore losing information about
activations unrelated to the highest predicted class. However, this architecture
does not improve significantly the accuracy compared to a simple averaging.

Building on the idea of residual deep learning [11], we propose a fusion net-
work based on residual correction. Instead of dropping entirely the last convolu-
tional layers from the two SegNets, we keep them to compute the average scores.
Then, we use the intermediate feature maps as inputs to a 3-convolution layers
“correction” network, as illustrated in Fig. 4. Using residual learning makes sense
in this case, as the average score is already a good estimation of the reality. To
improve the results, we aim to use the complementary channels to correct small
errors in the prediction maps. In this context, residual learning can be seen as
learning a corrective term for our predictive model. Let Mr denote the input of
the rth stream (r ∈ {1, . . . , R} with R = 2 here), Pr the output probability ten-
sor and Zr the intermediate feature map used for the correction. The corrected
prediction is:

P ′(M1, . . . ,MR) = P (M1, . . . ,MR) + correction(Z1, . . . , ZR) (5)

where

P (M1, . . . ,MR) =
1

R

R∑
r=1

Pr(Mr) . (6)
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Table 1: Results on the validation set with different initialization policies.

Initialization Random VGG-16

Learning rate ratio lre
lrd

1 1 0.5 0.1 0

Accuracy 87.0% 87.2% 87.8% 86.9% 86.5%

Table 2: Results on the validation set.

Type/Stride (px) 128 (no overlap) 64 (50% overlap) 32 (75% overlap)

Standard 87.8% 88.3% 88.8%
Multi-kernel 88.2% 88.6% 89.1%

Fusion (average) 88.2% 88.7% 89.1%
Fusion (correction) 88.6% 89.0% 89.5%

Multi-kernel + Average 88.5% 89.0% 89.5%
Multi-kernel + Correction 88.7% 89.3% 89.8%

Using residual learning should bring ‖correction‖ � ‖P‖. This means that
it should be easier for the network to learn not to add noise to predictions where
its confidence is high (‖correction‖ ' 0) and only modify unsure predictions.
The residual correction network can be trained by fine-tuning as usual with a
logistic loss after a softmax layer.

4 Experiments

4.1 Experimental Setup

To compare our method with the current state-of-the-art, we train a model using
the full dataset (training and validation sets) with the same training strategy.
This is the model that we tested against other methods using the ISPRS evalu-
ation benchmark1.

4.2 Results

Our best model achieves state-of-the art results on the ISPRS Vaihingen dataset
(cf. Table 3) 2. Fig. 5 illustrates a qualitative comparison between SegNet using
our multi-kernel convolutional layer and other baseline strategies on an extract
of the Vaihingen testing set. The provided metrics are the global pixel-wise
accuracy and the F1 score on each class:

1 In this benchmark, the evaluation is not performed by us or any other competing
team, but directly by the benchmark organizers.

2 http://www2.isprs.org/vaihingen-2d-semantic-labeling-contest.html

http://www2.isprs.org/vaihingen-2d-semantic-labeling-contest.html
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Table 3: ISPRS 2D Semantic Labeling Challenge Vaihingen results.

Method imp surf building low veg tree car Accuracy

Stair Vision Library (“SVL 3”)[23] 86.6% 91.0% 77.0% 85.0% 55.6% 84.8%
RF + CRF (“HUST”)[35] 86.9% 92.0% 78.3% 86.9% 29.0% 85.9%

CNN ensemble (“ONE 5”)[36] 87.8% 92.0% 77.8% 86.2% 50.7% 85.9%
FCN (“UZ 1”) 89.2% 92.5% 81.6% 86.9% 57.3% 87.3%

FCN (“UOA”)[37] 89.8% 92.1% 80.4% 88.2% 82.0% 87.6%
CNN + RF + CRF (“ADL 3”)[5] 89.5% 93.2% 82.3% 88.2% 63.3% 88.0%

FCN (“DLR 2”)[22] 90.3% 92.3% 82.5% 89.5% 76.3% 88.5%
FCN + RF + CRF (“DST 2”) 90.5% 93.7% 83.4% 89.2% 72.6% 89.1%

Ours (multi-kernel) 91.5% 94.3% 82.7% 89.3% 85.7% 89.4%
Ours (multi-kernel + fusion) 91.0% 94.5% 84.4% 89.9% 77.8% 89.8%

IRRG data “SVL”[23] RF + CRF[35] “DLR”
(FCN)[22]

Ours (SegNet)

Fig. 5: Comparison of the generated segmentations using several methods of the
ISPRS Vaihingen benchmark (patch extracted from the testing set).
(white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: cars)

F1i = 2
precisioni × recalli
precisioni + recalli

and recalli =
tpi
Ci

, precisioni =
tpi
Pi

, (7)

where tpi the number of true positives for class i, Ci the number of pixels
belonging to class i, and Pi the number of pixels attributed to class i by the
model. These metrics are computed using an alternative ground truth in which
the borders have been eroded by a 3px radius circle.

Previous to our submission, the best results on the benchmark were ob-
tained by combining FCN and hand-crafted features, whereas our method does
not require any prior. The previous best method using only a FCN (“DLR 1”)
reached 88.4%, our method improving this result by 1.4%. Earlier methods using
CNN for classification obtained 85.9% (“ONE 5”[36]) and 86.1% (“ADL 1”[5]).
It should be noted that we outperform all these methods, including those that
use hand-crafted features and structured models such as Conditional Random
Fields, although we do not use these techniques.
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Fig. 6: Effects of the multi-kernel convolutional layer on selected patches.

4.3 Analysis

Sliding Window Overlap Allowing an overlap when sliding the window across
the tile slows significantly the segmentation process but improves accuracy, as
shown in Table 2. Indeed, if we divide the stride by 2, the number of patches
is multiplied by 4. However, averaging several predictions on the same region
helps to correct small errors, especially around the borders of each patch, which
are difficult to predict due to a lack of context. We find that a stride of 32px
(75% overlap) is fast enough for most purposes and achieves a significant boost
in accuracy (+1% compared to no overlap). Processing a tile takes 4 minutes on
a Tesla K20c with a 32px stride and less than 20 seconds with a 128px stride.
The inference time is doubled using the dual-stream fusion network.

Transfer Learning As shown in Table 1, the model achieves highest accuracy
on the validation set using a low learning rate on the encoder. This supports
previous evidences hinting that fine-tuning generic filters on a specialized task
performs better than training new filters form scratch. However, we suggest that
a too low learning rate on the original filters impede the network from reaching
an optimal bank of filters if enough data is available. Indeed, in our experiments,
a very low learning rate for the encoder (0.1) achieves a lower accuracy than a
moderate drop (0.5). We argue that given the size and the nature (EO data)
of our dataset, it is beneficial to let the filters from VGG-16 vary as this allows
the network to achieve better specialization. However, a too large learning rate
brings also the risk of overfitting, as showed by our experiment. Therefore, we
argue that setting a lower learning rate for the encoder part of fully convolutional
architectures might act as regularizer and prevent some of the overfitting that
would appear otherwise. This is similar to previous results in remote sensing [20],
but also coherent with more generic observations [38].

Multi-kernel Convolutional Layer The multi-kernel convolutional layer brings
an additional boost of 0.4% to the accuracy. As illustrated in Fig. 6, it smooths
the prediction by removing small artifacts isolated in large homogeneous regions.
It also helps to alleviate errors by averaging predictions over several models.
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Fig. 7: Effects of our fusion strategies on selected patches.

This approach improves previous results on the ISPRS Vaihingen 2D labeling
challenge, reaching 89.4% 3 (cf. Table 3). Improvements are significant for most
classes, as this multi-kernel method obtains the best F1 score for “impervious
surfaces” (+1.0%), “buildings” (+0.8%) and “cars” (+3.7%) classes. Moreover,
this method is competitive on the “low vegetation” and “tree” classes. Although
the cars represent only 1.2% of the whole Vaihingen dataset and therefore does
not impact strongly the global accuracy, we believe this improvement to be
significant, as our model is successful both on “stuff” and on objects.

Data Fusion and Residual Correction Naive prediction fusion by averag-
ing the maps boosts the accuracy by 0.3-0.4%. This is cumulative with the gain
from the multi-kernel convolutions, which hints that the two methods are com-
plementary. This was expected, as the latter leverages multi-scale predictions
whereas the data fusion uses additional information to refine the predictions.
As illustrated in Fig. 7, the fusion manages to correct errors in one model by
using information from the other source. The residual correction network gen-
erates more visually appealing predictions, as it learns which network to fa-
vor for each class. For example, the IRRG data is nearly always right when
predicting car pixels, therefore the correction network often keeps those. How-
ever the composite data has the advantage of the DSM to help distinguish-
ing between low vegetation and trees. Thus, the correction network gives more
weight to the predictions of the “composite SegNet” for these classes. Interest-
ingly, if mavg, mcorr, savg and scorr denote the respective mean and standard
deviation of the activations after averaging and after correction, we see that
mavg ' 1.0, mcorr ' 0 and savg ' 5, scorr ' 2 . We conclude that the network
actually learnt how to apply small corrections to achieve a higher accuracy, which
is in phase with both our expectations and theoretical developments [11].

3 “ONE 6”: https://www.itc.nl/external/ISPRS_WGIII4/ISPRSIII_4_Test_

results/2D_labeling_vaih/2D_labeling_Vaih_details_ONE_6/index.html

https://www.itc.nl/external/ISPRS_WGIII4/ISPRSIII_4_Test_results/2D_labeling_vaih/2D_labeling_Vaih_details_ONE_6/index.html
https://www.itc.nl/external/ISPRS_WGIII4/ISPRSIII_4_Test_results/2D_labeling_vaih/2D_labeling_Vaih_details_ONE_6/index.html
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This approach improves our results on the ISPRS Vaihingen 2D Labeling
Challenge even further, reaching 89.8% 4 (cf. Table 3). F1 scores are significantly
improved on buildings and vegetation, thanks to the discriminative power of the
DSM and NDVI. However, even though the F1 score on cars is competitive, it
is lower than expected. We explain this by the poor accuracy of the composite
SegNet on cars, that degrades the average prediction and is only partly corrected
by the network. We wish to investigate this issue further in the future.

5 Conclusion and Future Work

In this work, we investigated the use of DFCN for dense scene labeling of EO
images. Especially, we showed that encoder-decoder architectures, notably Seg-
Net, designed for semantic segmentation of traditional images and trained with
weights from ImageNet, can easily be transposed to remote sensing data. This re-
inforces the idea that deep features and visual filters from generic images can be
built upon for remote sensing tasks. We introduced in the network a multi-kernel
convolutional layer that performs convolutions with several filter sizes to aggre-
gate multi-scale predictions. This improves accuracy by performing model aver-
aging with different sizes of spatial context. We investigated prediction-oriented
data fusion with a dual-stream architecture. We showed that a residual correc-
tion network can successfully identify and correct small errors in the prediction
obtained by the naive averaging of predictions coming from heterogeneous in-
puts. To demonstrate the relevance of those methods, we validated our methods
on the ISPRS 2D Vaihingen semantic labeling challenge, on which we improved
the state-of-the-art by 1%.

In the future, we would like to investigate if residual correction can improve
performance for networks with different topologies. Moreover, we hope to study
how to perform data-oriented fusion, sooner in the network, to reduce the compu-
tational overhead of using several long parallel streams. Finally, we believe that
there is additional progress to be made by integrating the multi-scale nature of
the data early in the network design.
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