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ABSTRACT:

As computer vision before, remote sensing has been radically changed by the introduction of Convolution Neural Networks. Land
cover use, object detection and scene understanding in aerial images rely more and more on deep learning to achieve new state-of-the-
art results. Recent architectures such as Fully Convolutional Networks (Long et al., 2015)) can even produce pixel level annotations for
semantic mapping. In this work, we show how to use such deep networks to detect, segment and classify different varieties of wheeled
vehicles in aerial images from the ISPRS Potsdam dataset. This allows us to tackle object detection and classification on a complex
dataset made up of visually similar classes, and to demonstrate the relevance of such a subclass modeling approach. Especially, we want
to show that deep learning is also suitable for object-oriented analysis of Earth Observation data. First, we train a FCN variant on the
ISPRS Potsdam dataset and show how the learnt semantic maps can be used to extract precise segmentation of vehicles, which allow us
studying the repartition of vehicles in the city. Second, we train a CNN to perform vehicle classification on the VEDAI (Razakarivony

and Jurie, 2016)) dataset, and transfer its knowledge to classify candidate segmented vehicles on the Potsdam dataset.

1. INTRODUCTION

Deep learning for computer vision grows more popular every
year, especially thanks to Convolutional Neural Networks (CNN)
that are able to learn powerful and expressive descriptors from
images for a large range of tasks: classification, segmentation, de-
tection . .. This ubiquity of CNN in computer vision is now start-
ing to affect remote sensing as well, as they can tackle many tasks
such as land use classification or object detection in aerial images.
Moreover, new architectures have appeared, derived from Fully
Convolutional Networks (Long et al., 2015)), able to output dense
pixel-wise annotations and thus able to achieve fine-grained clas-
sification. Such architectures have quickly become state-of-the-
art for popular datasets such as PASCAL VOC2012 (Everingham
et al., 2014) and Microsoft COCO (Lin et al., 2014). In an Earth
Observation context, these FCN models are now especially ap-
pealing, as dense prediction allows us performing semantic map-
ping without requiring any pre-processing tricks. Therefore, us-
ing FCN for Earth Observation means we can shift from super-
pixel segmentation and region-based classification (Lagrange et
al., 2015} |Audebert et al., 2016, Nogueira et al., 2016)) to fully
supervised semantic segmentation (Marmanis et al., 2016).

FCN models have been successfully applied for remote sensing
data analysis, notably land cover mapping on urban areas (Mar-
manis et al., 2016, |Paisitkriangkrai et al., 2015)). For example,
FCN-based models are now the state-of-the-art on the ISPRS
Vaihingen Semantic Labeling dataset (Rottensteiner et al., 2012,
Cramer, 2010). Therefore, even though remote sensing images do
not share the same structure as natural images, traditional com-
puter vision deep networks are able to successfully extract seman-
tics from them, which was already known for deep CNN-based
classifiers (Penatti et al., 2015)). This encourages us to investigate
further: can we use deep networks to tackle an especially hard re-
mote sensing task, namely object segmentation ? Therefore, this
work focuses on using deep convolutional models for segmenta-
tion and classification of vehicles using optical remote sensing
data.

To tackle this problem, we design a two-step pipeline for segmen-
tation and classification of vehicles in aerial images. First, we use

the SegNet architecture (Badrinarayanan et al., 2015) for seman-
tic segmentation on the ISPRS Potsdam dataset. This allows us
generating a pixel-level mask on which we can extract connected
components to detect the vehicle instances. Then, using a CNN
trained on vehicle classification using the VEDAI dataset (Raza-
karivony and Jurie, 2016), we classify each instance to infer the
vehicle type and to eliminate false positives. We then show how
to exploit this information to provide new pieces of data about
vehicle types and vehicle repartition in the scene.

Our work is closesly related to (Marmanis et al., 2016/, [Paisitkri-
angkrai et al., 2015) who also use Fully Convolutional Network
for urban area mapping. However we focus only on small ob-
jects, namely vehicles, although we use the full semantic map-
ping as an intermediate product in our pipeline. Moreover, re-
garding (Paisitkriangkrai et al., 2015), our work rely solely on
the deeply learnt representation of the optical data, as we do not
include any expert features in the process. On the vehicle detec-
tion task, (Chen et al., 2014) tried to detect vehicle in satellite
images using deep CNN, but only regressed the bounding boxes.
On the contrary, our pipeline is able to infer the precise object
segmentation, which could be regressed into a bounding box if
needed. In addition, we also classify the vehicles into several
subcategories using a classifier trained on a more generic dataset,
thus performing transfer learning.

2. PROPOSED METHOD
2.1 Semantic segmentation

Many deep network architectures are available for semantic seg-
mentation, including the original FCN (Long et al., 2015)) or many
variants such as DeepLab (Liang-Chieh et al., 2015). We choose
to use the SegNet architecture (Badrinarayanan et al., 2015)), since
itis well-balanced between accuracy and computational cost. Seg-
Net’s symmetrical structure and its use of pooling/unpooling lay-
ers is very effective for precise relocalisation of features accord-
ing to its authors. Indeed, preliminary tests underlined that Seg-
Net performs very well, including for small object localization.
Results with other architectures such as FCN reported either no
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Figure 1. [llustration of our vehicle segmentation + classification pipeline

improvement or an unsignificant improvement. However, note
that any deep network trained for semantic segmentation can be
used in our pipeline.

SegNet is based on the convolutional layers of the VGG-16 model
(Simonyan and Zisserman, 2014). VGG-16 was designed for the
ILSRVC competition and trained on the ImageNet dataset (Rus-
sakovsky et al., 2015)). Each block of the encoder is comprised of
2 or 3 convolutional layers followed by batch normalization (Ioffe
and Szegedy, 2015) and rectified linear units. A maxpooling layer
reduces the dimensions between each block. In the decoder, sy-
metrical operations are applied in the reverse order. The unpool-
ing operation replaces the pooling in the decoder: it relocates the
value of the activations into the mask of the maximum values
(“argmax”) computed at the pooling stage. Such an upsampling
results in a sparse activation map that is densified by the con-
secutive decoding convolutions. This allows us upsampling the
feature activations up to the original input size, so that after the
decoder, the final output feature maps have the same dimensions
as the input, which is necessary for pixel-level inference.

We initialize the weights of the encoder using VGG-16’s weights
trained on ImageNet. By doing so, we leverage the expressive-
ness of the filters learned by VGG-16 when training on this very
diverse dataset. This initialization allows us improving the final
segmentation accuracy compared to a random initialization and
also makes the model converge faster.

We train SegNet on semantic segmentation on the ISPRS Pots-
dam dataset. This translates to pixel-wise classification, i.e each
pixel is classified as belonging to one class from the ISPRS bench-
mark: “impervious surface”, “building”, “tree”, “low vegetation”,
“car” or “clutter”. From this semantic map, we can then extract
the vehicle mask which labels all the pixels inferred to belong to

the “car” class.
2.2 CNN classification

After generating the full semantic map from one tile, we can ex-
tract the vehicle mask. We perform connected components ex-
traction to find all candidate vehicles in the predicted map. To
separate vehicles that are very close to each other in the RGB im-
age and that might belong to the same connected component, we
use a morphological opening to open the gap and separate the ob-
jects. In addition, to smooth the predictions and eliminate small
artifacts and imperfections from SegNet’s predicted map, we re-
moved connected components that are too small to be a vehicle
(surface < 32 px). For each vehicle (any remaining connected
component), we extract a rectangular patch around its bounding
box, including 16 px of spatial context on all sides. This patch is
then fed to a CNN classifier trained to infer the vehicle’s precise
class. The full pipeline is illustrated in Figurem

We compare 3 CNN for vehicle classification: LeNet (Lecun et
al., 1998)), AlexNet (Krizhevsky et al., 2012) and VGG-16 (Si-
monyan and Zisserman, 2014). We use the VEDAI dataset to

train these models, so that the Potsdam vehicles will be entirely
unseen data. This is to show how knowledge learnt by deep net-
works on remote sensing data can be transferred efficiently from
one dataset to another, under the assumption that provided reso-
lutions (12.5cm) and data sources (RGB) are the same. The clas-
sifiers learn to discriminate between the following 11 classes of
vehicles from VEDALI, with a very high variability: “car”, “camp-
ing car”, “tractor”, “truck”, “bike”, “van”, “bus”, “ship”, “plane”,
“pick up” and “other vehicles”.

LeNet is a model introduced by (Lecun et al., 1998) designed for
character recognition in greyscale image. Our version takes in
input a 224 x 224 color image. It is a comparatively small model
with few parameters (~ 461K parameters) that can be trained
very quickly.

AlexNet is a very popular model introduced in (Krizhevsky et
al., 2012)) that won the ILSVRC challenge in 2012. It takes in
input a 227 x 227 color image. As there are three final fully
connected layers, AlexNet is a relatively big network with 61M
parameters. We fine-tune the last layer of the reference ImageNet
trained implementation of AlexNet.

Finally, VGG-16 is another popular model designed by (Simonyan
and Zisserman, 2014), on which is based the SegNet segmenta-
tion network introduced in Section[2:1] It outperformed AlexNet
on the ImageNet benchmark in 2014. It takes in input a 224 x 224
color image. VGG-16 is the biggest of our three models with
138M parameters. Once again, we fine-tune only the last layer of
the reference weights of VGG-16 trained on ImageNet. It is the
biggest and slowest of the three models tested in this work.

3. EXPERIMENTS
3.1 Experimental setup

3.1.1 VEDAI This VEDAI dataset (Razakarivony and Jurie,
2016) is comprised of 1268 RGB tiles (1024 x 1024px) and the
associated IR image at 12.5cm spatial resolution. For each tile,
annotations are provided detailing the position of the vehicles and
the associated bounding box (defined by its 4 corners). We cross-
validated the results on three of the suggested splits of the dataset
for the training and testing sets. The training set for the CNN is
built by extracting square patches around each vehicle bounding
box, padded with 16 px of spatial context on each side. We use
data augmentation to increase the number of samples by includ-
ing rotated (5, 7 and 37’“) and mirrored versions of the patches
containing vehicles.

We train each model during 50 epochs (~ 1000000 iterations)
with a batch size of respectively 128 for LeNet and AlexNet and
32 for VGG-16, and a learning rate of 0.001, divided by 10 after
30 epochs. Training takes about 25 minutes for LeNet, 60 min-
utes for AlexNet and 10 hours for VGG-16 on NVIDIA K20c
GPU.



Table 1. Average CNN accuracies on VEDALI (3 train/test splits)

Model/Class Car Truck Ship  Tractor Camping car Van Pick up Plane Other Global
LeNet 743% 544% 31.0% 61.1% 85.9% 383%  67.7% 13.0% 47.5% 663+ 1.7%
AlexNet 91.0% 84.8% 814% 83.3% 98.0% 711%  85.2% 914% 718% 87.5+1.5%
VGG-16 90.2% 86.9% 869% 86.5% 99.6 % 711% 914% 100.0% 772% 89.7+ 1.5%
(a) RGB data (b) Ground truth  (c) SegNet output

Figure 2. Car partially occluded by a tree on the Potsdam dataset
and misclassification according to the ground truth

3.1.2 ISPRS Potsdam This ISPRS Potsdam Semantic Label-
ing dataset (Rottensteiner et al., 2012)) is comprised of 38 RGB
tiles (6000 x 6000 px) and the associated IR and DSM images at
Scm spatial resolution. A comprehensive ground truth is provided
for 24 tiles, which are the tiles we will work with. We split ran-
domly the dataset in train/validation/test with 70/10/20 propor-
tions. For a fair comparison of the two datasets (ISPRS Potsdam
and VEDAYI) in the same framework, we only use the RGB data
and downsample the resolution from 5 cm/pixel to 12.5 cm/pixel.
However, note that SegNet would perform even better for small
object segmentation on the high resolution tile.

We build our segmentation training set by sliding a window of
128 x 128 px over each high resolution tile, including an over-
lap of 75% (32 px stride). For this experiment, we use all the
classes from the ground truth. This means that we not only train
the model to predict the vehicle mask, but also to assign a label
to each pixel according to the ISPRS classes, except “clutter”:
“impervious surface”, “building”, “tree”, “low vegetation” and
“car”. The model is trained by Stochastic Gradient Descent for
10 epochs (=~ 100000 iterations) with a batch size of 10 and a
learning rate of 0.1, divided by 10 after 3 and 8 epochs. This
takes around 24 hours with a NVIDIA K20c GPU.

At testing time, we process the tiles by sliding a window of 128 x
128 px with an overlap of 50%. For overlapping pixels, we av-
erage the multiple predictions on each pixel. Processing one tile
takes around 70 seconds on a NVIDIA K20c GPU. The predicted
semantic map contains all classes from the ISPRS benchmark.
We extract only the mask for the “car” class as we are mainly in-
terested in how SegNet behaves for small objects, especially vehi-
cles. We report results before and after removing objects smaller
than a predefined threshold.

To compute vehicle classification metrics, we build manually an
enhanced ground truth by subdividing the “car” class into several
subcategories: “cars”, “vans”, “trucks”, and “pick ups”. We dis-
card other vehicles that are present in the RGB data (especially

construction vehicles) but not in the original ground truth.

3.2 Results

3.2.1 VEDAI Asdetailedin Table both VGG-16 and AlexNet

are able to discriminate between the different classes of the VEDAI
dataset, with respectively 89.7% and 87.5% global accuracy. LeNet
is lagging behind and performs significantly worse than its deeper
counterpart, with an accuracy of only 66.3%. This result is not

(2) Van misclassi- (b) Car misclassi- (¢) Pick up misclassi-

fied as truck fied as van fied as van

Figure 3. Successful segmentation but misclassified vehicles in
the Potsdam dataset

surprising, as LeNet is a very small network in comparison to
both AlexNet and VGG-16 and therefore has a dramatically lower
expressive power. The LeNet model performs adequately on “easy”
classes, such as cars and camping cars, that have low intra-class
variability and high inter-class variability. However, it does not
work well on vans, which are difficult to distinguish from cars
from bird’s view. Moreover, classes with high intra-class vari-
ability (especially trucks and planes) are often misclassified by
LeNet.

Indeed, we argue that as VGG-16 and AlexNet were pre-trained
on ImageNet and fine-tuned on VEDALI, these models were al-
ready initialized with very powerful and expressive visual de-
scriptors learnt on a highly diverse image dataset. Therefore,
both networks benefited from a pre-training phase on a compre-
hensive dataset of natural images requiring complex filters able
to analyze shapes, textures and colors, which helped training on
VEDAL even though ImageNet does not contain any remote sens-
ing image. This fine-grained recognition based on textures and
shape allow the CNN to discrminate between classes with a low
inter-class variability such as cars and vans, and perform well on
classes with high intra-class variability such as planes or trucks.
This supports evidence that transfer learning and fine-tuning of
ImageNet-trained deep convolutional neural networks is an ef-
fective way to process aerial images as shown in previous works

(Penatti et al., 2015)).

3.2.2 ISPRS Potsdam

Vehicle segmentation The overall accuracy of the SegNet se-
mantic mapping on the downsampled ISPRS dataset is 89.5%,
excluding clutter and eroding borders by 3 px. Compared to the
state-of-the-art result of 90.3%'11 this result is quite good consid-
ering that we use a downscaled version of the datq”}| When con-
sidering only the “car” class (which comprises all kinds of ter-
restrial motorized vehicles), the F1 score at pixel level is 88.4%
(95.5% with the eroded borders). We also report a pixel-wise
precision of 87.8% and a recall of 89.0%. This indicates that the
vehicle mask generated from SegNet’s semantic map should be
very accurate and can be used for further object-based analysis.

Thttp://www2.isprs.org/potsdam-2d-semantic-labeling.
html

ZHowever, we only report our result on a validation set and not on the
full testing set, as full semantic mapping of the ISPRS Potsdam dataset is
out of the scope of this work.
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Figure 4. Successful segmentation and classification of vehicles in the Potsdam dataset

Table 2. Vehicle counts in testing tiles of ISPRS Potsdam

Tile # 211 7_12 3_11 5.12 17_10
Cars in ground truth 110 351 168 428 253
Predicted cars 115 342 182 435 257

This is supported by qualitative inspection of the semantic maps
on car-heavy areas, such as the one presented in Figure[5]

The mean Intersection over Union (IoU) reaches 75.6%. How-
ever, there is a high variance in the IoU depending on the specific
surroundings of each car. Indeed, because of occlusions due to
trees, the ground truth sometimes is labelled as tree even if the
car is visible in the RGB image. This causes SegNet to misclas-
sify (according to the ground truth) most of the pixels, resulting
in a low IoU despite the visual quality of the segmentation. This
phenomenon is illustrated by Figure[2] However, as SegNet man-
ages to still infer the car’s contours, this should not impede too
severely later vehicle extraction and classification.

Counting cars We extract the vehicle mask from the semantic
map of Potsdam generated by SegNet. Each connected compo-
nent is expected to be a vehicle instance. We count the number of
predicted instances in each tile of the testing set. Detailed results
are reported in Table 2] and show that our model can be used to
estimate precisely the number of vehicles in the original tile with
an average relative error of less than 4%.

We also show that we can use this information to generate heat
maps of the vehicle repartition in the tile (cf. Figure[6). Such
a visualization provides an indicator of the vehicle density in the
urban area, and exacerbates high traffic roads and “hot spots” cor-
responding to parking lots around points of interest (e.g. hospitals
or shopping malls). This can be useful for many urban planning
applications, such as parking lot sizing, traffic estimation, etc. In
temporal data, this could be used to monitor traffic flows, but also
study the impact of the road blocks, jams, etc.

Classification Using our AlexNet-based CNN classifier, we are
able to classify the candidate vehicle instances generated by Seg-
Net on the Potsdam dataset. We compare the predicted results to
our enhanced vehicle ground truth. On our testing set, we clas-
sify correctly 75.0% of the instances. We are able to improve
even further this result by switching to the VGG-16 based clas-
sifier which brings accuracy to 77.3% (cf. Table [3] for detailed
results). It should be noted that the dataset is predominantly
comprised of cars, and that trucks and pick ups are less repre-
sented, which decreases their influence on the global accuracy
score. Figure[]illustrates some vehicle instances where our deep
network-based segmentation and classification pipeline was suc-
cessful, while Figure[3]shows some examples of correct segmen-
tation but subsequent misclassification.

The fact that the average accuracy of the models on Potsdam are
lower than results reported on VEDAI suggests that our networks

Table 3. Classification results on the enhanced Potsdam vehicle
ground truth

Class Car Van Truck  Pickup  Global
AlexNet 81% 42% 50% 50% 75%
VGG 83% 55% 50% 33% 77%

suffered from overfitting. One hypothesis that we make is that
VEDALI and Potsdam are images taken from two similar but sub-
tly different environments. Indeed, Potsdam is a urban european
city whereas VEDAI images have been shot over Utah, on a more
rural american environment. Therefore, vehicle brands and dif-
ferent land covers around the cars might influence the classifiers.
More comprehensive regularization (e.g. dropout

[al., 2014)) during fine-tuning and/or training on a more diverse
dataset would help alleviate this phenomenon.

4. CONCLUSION

In this work, we presented a two-step framework to detect, seg-
ment and classify vehicles from aerial RGB images using deep
learning. More precisely, we showed that deep network designed
for semantic segmentation such as SegNet are useful for scene
understanding of remote sensing data and can be used to segment
even small objects, such as cars and trucks. We reported results
on the ISPRS Potsdam dataset showing very promising results on
wheeled vehicles, achieving a F1 score of 77.3% on this specific
class.

In addition, we presented a simple deep learning based method to
improve further this analysis by classifying the different types of
vehicle present in the scene. We trained several deep CNN on the
VEDALI dataset and transferred their knowledge to the Potsdam
dataset. Our best model, fine-tuned from VGG-16, was able to
classify successfully more than 77% of the vehicles in our testing
set.

Finally, this work meant to provide useful pointers for applying
deep learning to scene understanding in Earth Observation with
an object-oriented approach. We showed that not only deep net-
works are the state-of-the-art for semantic mapping, but that they
can also be used to extract useful information at an object level,
with a direct application on vehicle detection and classification.

We showed that it is possible to enumerate and extract individual
object instances from the semantic map in order to analyze the
vehicle distribution in the images, leading to the localization of
points of interest such as high traffic roads and parking lots. This
has many applications in traffic monitoring and urban planning,
such as analyzing parking lots occupancy, finding pollutants ve-
hicles in unauthorized zones (combined with a classifier), etc.
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Figure 5. SegNet results on a parking lot (extracted from the ISPRS dataset, best viewed in color)
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Figure 6. Visualizing vehicles in the ISPRS Potsdam dataset (best viewed in color)
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